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I. INTRODUCTION

MAGNETOHYDRODYNAMICS is the study of the flow of electrically conducting
fluids interacting with the electromagnetic field. It is a subject which has
been developed quite recently, first probably by astrophysicists and
geophysicists interested in sunspots and the aurorae (e.g. Chapman and
Ferraro, Cowling), the earliest laboratory experiments, since Faraday,
probably being those of Hartmann on the flow of mercury, experiments
which have led to the development of magnetic pumping of liquid metals.
In the past few years the hope of obtaining power from controlled thermo-
nuclear reactions in a magnetically confined plasma (ionized gas) has
given great stimulus to the subject, and quite recently the possibility of
using fluid field interactions in systems of ionic drive, magnetohydro-
dynamic braking, and magnetic insulation has begun to intrigue the
aeronautical scientist.

The interaction between fluid and field occurs first through the body
force between the current density j and the magnetic field B

F = j B

and secondly through the effect of the induced current j on the magnetic
field, given by Maxwell's relation

curl B = 477- j.

These processes are necessarily complex, but in certain idealizations
can be represented by the concepts of "the magnetic pressure" and "the
frozen-in field". I shall be concerned with basic physical processes which
underlie the behaviour described by these expressions, particularly in
extremely hot ionized gases, probably the most interesting case.

2. MATHEMATICAL DESCRIPTION OF


MAGNET OHY D ROD YNAM I CS

In a subject such as this we must depend heavily on mathematical
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methods; and as one starting point we can use the Xavier-Stokes equation
coupled to Maxwell's equations for the field.

Du 4
p

Dt
= vp-- r (curl curl u) - r g rad div u -7- • B q • E (2.1)

3 -

where r is the viscosity and
ap

curl H - 4-7j at (2.2)

	

c2 	

as

at

div B - 0, div D 477-q.

In addition we will need constitutive equations, H -(1 ../1)B and D=KE,
the equation of continuity, some equation determining p, and one deter-
mining j. The flow is often assumed adiabatic (r=o)p-p,, and the current
determined by a local Ohm's law,

j = uE* u(E u B) (2.4)

where a is the electrical conductivity, and E*, the local electric field, i.e.
the electrical force acting on a unit charge moving with the local velocity
u of the fluid. The magnetohydrodynamic terms are made more trans-
parent on being transformed. If j in (2.1) is replaced by (2.2), with the
displacement current (1 'c2)(aD at)neglected and /2. assumed constant, we
obtain

j BA
1

(curl B) B 	 [grad B2 - 2(B V) B] (2.5)
-f

1

	

7rit 87T[4

which represents a non-isotropic pressure /32,877-p, acting at right angles to
the field lines. For many problems the charge density q vanishes, and this
magnetic pressure is the sole dynamical effect of electromagnetic field.
If we operate with curl on (2.2) and use the generalized Ohm's Law
(2.4) to eliminate j (with a a constant), then use (2.3) to eliminate curl E
we obtain

curl (curl B) [curl E cucl (u •: B)]

as
at (u .V)B B .V)u - B div u

or

	

DB 1
  B div u (B.V)u z- A  \7213. (2.6)

	

Dt 9-7772,C5

The terms on the left of this equation represent a convection of field
lines with the fluid motion, while that on the right represents the diffusive
penetration of field into a conducting medium.

curl E
(2.3)

417/10"

3. NIAGNETOHYDRODYNAMIC REGIONS


Examination of these equations discloses the conditions for typical



1100 W. 11.THOMPSON

magnetohydrodynamic behaviour. From (2.1) and (2.5) it is clear that, if
the magnetic field and the motion are to interact strongly, the kinetic
energy of motion 1pu2-132/877-1,t, or

112

477-/tpu2

For equality  u—c..1—A/ B2/47/jp,  the Alfvn velocity. Also, if the

convection of field lines is to be more important than diffusion, i.e. if the
flow is seriously to affect the field, we must have

1
(u.V)B 	 V2B

477-vo-
i.e.

tiL47,aa>1 (3.2)

where  L  is a characteristic distance for variations in the magnetic field.
These two conditions may be combined to give the condition for "typical"
magnetohydrodynamic behaviour.

7
M B L o-

4
 >  1. (3.3)

P

The first table gives the value of M under simple laboratory conditions,
i.e.  L =10  cm,  B  1000 g for various fluids. Ctt2t 1 throughout.)

Conditions for "typical" magnetohydrodynamic behaviour on laboratory
scale B-1000  g,  L =10  cm, ts =1  M :::,>1

Density

Fluid p g cm

Ilg13.5
Na (liquid) 0.93

Conductivity

(7- .11-1 .111

1 0 5
1 0

1. (3.1)

5% ionized gas

ni —1W" T 104
Llot plasma

n - 10's T -  10"
Thermonuclear plasma

it— 1W" T- 1W

10 8 2.3 •10"

10 -" 3 10-5

10 ' 3• 10

103


3 104


107

4. IDEALIZED MAGNETOHYDRODYNAAIICS

If the magnetic pressure  132 /871- is comparable to the hydrostatic pressure
p the field can be expected to affect slow motions of the fluid, and since a
field of —5000 g has an associated magnetic pressure of 1 atmosphere,
dynamic effects are easily produced by strong magnetic fields. However, if
the conductivity is low the diffusive term in (2.6) is dominant, the magnetic
effects are dissipative and motions are magnetically damped, unless the
currents are maintained from external sources as in a magnetic pump.
However, if the conductivity, or more properly  4711aLu,  is large, dissipative
processes are unimportant and, for studies of its motion, the fluid may be
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considered as a perfect electric conductor. In this case we replace Ohm's
law by the statement that the local electric field vanishes,

E* = E u B = 0. (4.1)

The development of the field is then determined by the appropriate
form of (2.6)

Dt
B B div u — (B.V)u = 0.

This should be compared with the equation governing the vorticity i of
a non-viscous fluid

• 1/J di v u — . V)u 0,

hence, by analogy, Kelvin's theorem holds for magnetic field, i.e. the flux
encircled by a closed curve moving with the fluid is constant. This reflects
the vanishing of the electric field in the fluid, for Maxwell's equation (2.3)
indicates that the rate of change of flux threading a loop is proportional
to the electromotive force around the loop, i e.

Dry, I) •
Dt B.dS = ÇE*.dI

1)t

but since E*=0, Dry DI' =O.

This trapping of magnetic flux leads to the concept of the "frozen-in
field", the field lines being frozen to the fluid.

If the field lines are straight and the flow occurs in planes normal to
them, the magnetohydrodynamic relations become particularly simple,

p
DuB2) I)

t
— V (1) — —t B p =0;

87r D
(4.3)

which shows that the fl uid moves as though mixed with an isentropic
inertialess component with y =2 ; p T —P +PH, p1 --(132/877) p2.

5. TYPICAL MAGNETOHYDRODYNAMIC PHENOMENA

The simple concepts of magnetic pressure and the "frozen-in field"
have some interesting consequences.

For example, it is possible to move an ionized gas by altering magnetic
fields, propelling it by magnetic pressure, and this forms the basis of ion
drive. Also, it is possible to slow down or stop an ionized gas by running
it into a region of increasing magnetic field or to use the interaction
between a magnetic field produced in a body and a surrounding ionized
gas to slow down the body, by magnetic braking. When a gas is so slowed

I)
(4.2)
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down the magnetic pressure, hence the magnetic field, is increased, thus
causing increased currents to flow and enabling some of the kinetic energy
of the gas to be taken off directly as electricity. By balancing gas pressure
against magnetic pressure a mass of hot ionized gas may be isolated from
its surroundings by a magnetic field, and it is this possibility which makes
magnetohydrodynamics of such crucial importance in research on con-
trolled thermonuclear reactions. The inverse of this arrangement, where a
magnetic field is used to isolate a body surrounded by hot gas should be
of great interest to the aeronautical scientist.

In addition to these steady processes, the dynamic processes in a
magnetohydrodynamic fluid differ from those of a normal fluid. For
instance, the equations (4.3) indicate that the velocity of sound in the
fluid is anisotropic. In directions parallel to the magnetic field it remains
unaltered as e  ,

aP 7Pc- — —

while perpendicular to the field it becomes e

yp B2
-

p 477-p

In addition, because magnetic field lines behave as though elastic, trans-
verse waves can propagate along the field lines, travelling with the Alfvén
speed cA

B'


47r p
(5.3)

and these transmitted waves violently alter the character of the velocity
field, since vorticity is no longer conserved.

Since the velocity of sound perpendicular to the field increases with
density, it is clear the compressive shock waves can form in a magneto-
hydromagnetic fluid, and by using the concepts of conservation of matter,
momentum, energy, and magnetic flux, the magnetohydrodynamic ana-
logues of the Rankine Hugoniot equations can be written down.

[0] = 0

[02 p + B2 /8] = 0 (5.4)

[D12 + 7 P +  132 — 0y I P 47p

(5.1)


(5.2)
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6. THE PHYSICAL BASIS OF MAGNETOHYDRODYNAMICS

The conditions required for producing magnetohydrodvnamic behaviour
have been described, and it will be seen that for systems on a laboratory
scale, magnetohydrodynamic behaviour is most easily produced in a
diffuse hot plasma. This is the system of interest in controlled thermo-
nuclear research, and I suspect that of interest in aerodynamics. It is also
the system for which the connexion between the basic physical processes
and the mathematical idealization is most obscure. The conceptual
difficulties arise because of the long mean free paths of particles. For
example, in an ionized gas at 1 atmosphere pressure at a temperature of
106 degrees the mean free path is --4 metres, at 108 degrees it is ,--106
metres, and it is not clear how a hydrodynamic treatment can be justified.
I wish to show in what sense such a system behaves hydrodynamically,
and to discuss the limitations of the description.

7. THE PARTICLE INTERACTION

An ionized gas is no continuous fluid, but is composed of many charged
particles interacting through their electric fields, and it is our problem to
discover in what sense magnetohydrodynamics describes the gross
behaviour of such a system. Most plasmas are complicated by the presence
of neutral atoms or incompletely stripped ions with which electrons can
make complex inelastic collisions but if the temperature is high enough
all ions are completely stripped and the gas consists solely of ions and
electrons, which for most purposes make only elastic collisions. Even in
this case the particle interaction is not simple, for the interaction falls
off only as  1 r2,  while the probability of finding a particle at distance
r varies as 1'2, hence there is no simple way of defining a collision distance
ro, such that two particles separated by a distance  r<ro  interact, while if
the separation  r>ro  interaction is negligible. Instead we must think of
each particle interacting with very many of its neighbours, as in a liquid,
and it is necessary to consider the correlation between the motions of
nearby particles. Fortunately, the forces acting on the particles are usually
small, it is possible to evaluate these correlations by a number of techniques,
and it is discovered that the principal effect of the small correlation between
particle orbits is to introduce an effective screening.

As might be expected charges of like signs repel each other slightly,
while those of opposite sign attract, and thus, on average, any charge is
surrounded by a diffuse cloud of charges of the opposite sign, which serves
to screen out its field in a distance AD,

kT
D = 	 .

477ne2

This result has been obtained in several ways, perhaps most elegantly
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by noting that the plasma has a calculable dielectric constant li(o),k)
which depends on frequency and wave length of the applied field, thus the
electric field due to a test charge is not just -- 1 1-2,but a more elaborate

 function of the radius which finally vanishes as

1:r2 exp  rA,.
Furthermore, because of the slight bending of trajectories, the interaction

can be treated linearly, and the effectof many-body encounters considered
as the sum of many two-body encounters. 'Fit us, in spite of many differences
in the actual mechanism, the interaction between the charged particles
in a plasma can be treated formally like the short range interaction between
normal gas molecules, the true many-particle interaction being replaced
by an effective two-body interaction which however depends on tempera-
ture and density.
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8. KINETIC THEORY AND THE DEDUCTION OF

NORMAL HYDRODYNAMICS

In order to deduce hydrodynamics we may begin from the Boltzmann
equation for the distribution function f(x,v,t) for the assembly of particles,

dx dy dz dv.r dvy dv, giving the probability of finding a particle at a
position in the range dx dy dz at x having a velocity in the range d d dx -2' 2.

at v. Its time development occurs in two ways, first since particles

change their positions and velocities due to their motion under the in-

//
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fluence of given force fields F, and secondly because of discontinuous
changes produced by collisions. The total change, the sum of these, can be
shown to vanish from Liouville's theorem thus :

af af  dx af  dv

	

at + ax dt av dt + at
coll

af af  F  af af 0.
V. — — .at ax av at

Icon

The rate of change due to collisions represents the difference between
the rate at which particles are knocked into the region v and the rate at
which they are knocked out by collision with other particles, i.e.

af —IdU j d3v' !NT —  v' 0-(S2)[f(v)f(v)-1(v)f(v')].  (8.2)

// / / // // // / /

//
,

// '
// // /

/ GAS // / / / /

at
coll

By forming the moments of the B.E. with the mass, in,the momentum
mv and the energy  ;my',  all being quantities unchanged by collision, one
obtains three hydrodynamic equations:
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at

Dui a
p D — — 0 (8.3)

t axi

3 D au 1 a
2
- n —DtkT ± pi; — — 0

axi axi
where

p = infd3v, pu = Jmv fd3v

pjj = m(v — 11)1 (7) — u)j fd3v,

' 1
-3k T = -2m(v u)21d3v
2

I 1
q i — -2m(v — u)2 (v — u)1 fd3v.

These equations have the form of hydrodynamic equations, but have
no content until a method is discovered for determining p and  q,  and for
displaying how these depend on local conditions. In order that they
should, the distribution function must also depend on local conditions.
If its form is determined almost entirely by collisions, it does so, and the
problem can be solved. Formally this can be shown by introducing two
times, a collision time Te defined by

1 _ -.1
— --- i dS2 j daz.' v—v' 0-( Q)j- (v) f (v") = n az' > (8.5)

-,-,,

and a characteristic hydrodynamic time Th, determined by the nature of
the motion. If Th > > Tv , the Boltzmann equation may be solved by
expanding in powers of Te. Th, and considering the approximate equations
obtained by insisting that each coefficient vanish. This procedure leads,
in the first approximation, to the equations of isotropic flow, and in the
second, to the Navier-Stok es equation and the heat conduction equation
for a compressible gas.

9. DEDUCTION OF MAGNET011YDRODYNAMICS
For the ionized gas in a magnetic field one must use two distribution

functions, but an exactly similar analysis can be given, the current density
j being determined in addition.

In a magnetic field the method of analysis must be modified slightly and
rather complex expressions are found for the transport coefficients, all
of which become tensors (e.g. heat flow is not in the direction of the
temperature gradient), whose interpretation requires some care.

If the magnetic field is very strong a difficulty of principle appears.
In the term of the Boltzmann equation involving the acceleration,

e af

in ' av'

ap
div  (pu) =  0

(8.4)
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there appears a new characteristic frequency, the cyclotron frequency
WL—CB in, which may often be much higher than the collision frequency

:Te. In fact in just those hot ionized gases in strong fields where typical
magnetohydrodynamic behaviour is to be expected the product coL 7, is
particularly large; e.g. at a temperature of 1060, pressure of 1/10 atm
and a field of 2000 G (conditions in zETA)we find:

w L=7.5 1055 ec- ', Tc 8.10- 5sec, 0.)7 =60, for ions, while
COT =6.5 > 103for electrons

and considerable doubt is cast on the entire expansion procedure. Indeed,
for many magnetohydrodynamic processes, the collision frequency is less
than the frequencies associated with macroscopic motion, and hydro-
dynamic behaviour is not produced by collisions. In fact, the collisions
of particles often can be neglected altogether, the entire interaction
occurring with the macroscopic field.

10. COLLISION-FREE MAGNETOHYDRODYNANIICS

If we consider the motion of charged particles in a magnetic field, an
alternative method of arriving at magnetohydrodynamics suggests itself.
In a uniform magnetic field the motion of particles parallel to the field is
unaffected, but the component of the trajectory in the plane normal to
the field lines is bent into a circle, and the particle rotates about the field
lines with an angular frequency coL, in a circle of radius

rL =
v,

(10.1)

This restriction on particle motion localizes the trajectories to the
magnetic field lines and introduces a medium like behaviour for motion
across the field—the typical magnetohydrodynamic behaviour.

From what we have said already certain facts are apparent. Since there
are no collisions, there is nothing to make the velocity distribution iso-
tropic, however, the two components of velocity perpendicular to the
field lines must be equal. This suggests that the pressure, while not a
simple scalar, will contain two components ) and p which are
independent.

If we study the motion of particles in magnetic fields, using the equation
of motion

dv e [F
_–
di e

(10.2)



1108 W. B. THON1PSON

we discover in addition to the rotating velocity, the drift velocity vp
across the field lines,

iF E\

vp \ e ‘<H.

112

If we consider the drift of two particles of opposite sign, we get the mean
velocityu by adding

u—E HH2 ,

and the relative velocityW, related to the current by subtracting,

1 F < H
e 112 •

Thus, paradoxically, an electric field produces no current, but a drift of
the matter, whereas any non-electric force produces a current. This result
must be used with caution, since often the boundary conditions do not
permit current to flow, and the immediate effect of the forceF is to produce
a charge separation and an electric field perpendicular to F, whereupon
the electric field produces a velocity u in the direction of F--a process
which often makes a magnetically confined plasma unstable. An important
force F is that associated with the centrifugal acceleration of particles
moving along curved field lines, which gives rise to a velocity

1 mv7 TL
VD = 	 = -RV H


R eH

where R is the radius of curvature of the field lines.
The consequences of such particle motions can be obtained formally

by solving the collision-free Boltzmann equation by an expansion procedure
which utilizes the smallness of the Larmor radius rL in comparison with
the distance over which the fields change. In zero order, we obtain the
drift velocity E x HI/12,  and the statement that the distribution function
f is a function of the two velocity components vv , hence that the
pressure tensor has the two expected components po pi.  In first order
we obtain the currents due to effects described above, and in addition a
current due to density gradients. In steady state these arejnst those needed
to satisfy the magnetohydrostatic equation

vp = j x H.

As an example consider a diffuse plasma with a density gradient in the
OX direction confined in a magnetic field in the OZ direction. The current
that flows is a consequence of the imperfect cancelling of the circulating
velocities of individual particles

(10.3)

(10.4)


(10.5)
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n+ ev — n_ ev_ = je v sin Of (v,x r L sin 0)---

,x r L sin 0)

	

a af-
=eI dfi dy y, sin (-) [  f  IA- sin 0 — rL -- (-)]sin

ay  1.
(I

2,

V2 af
— do d3,---i- rill

II ax
ni _ — sin2 0

ax
ii

a
(p. p_), if B is effectively constant.

Hence
ap

j, 13, = 	.
ax

By similar or more formal arguments the magnetohydrostatic results can
be obtained.

To discuss the possible motions of a collision free magnetohydrodynamic
system, one notes first that the relation between zero order drift velocity
and electric field E -:- u.• B - 0 is exactly that for a perfect conductor, thus
flux trapping occurs and the field is frozen to the fluid. If by external
forces the fluid is forced to move along the field lines, the magnetic field
has no effect, but the components of velocity y and v, vary independently,
thus the perpendicular component of velocity is unaltered, and the pressure
increases solely because of the increase in density, p p. On the other
hand, only a single degree of freedom is associated with the parallel
velocity component and this increasesp p". If the gas is slowly com-
pressed perpendicular to the field lines, the field is slowly increased and

is increased by betatron acceleration in such a way that the flux
threading the Larmor orbits is unchanged, i.e.

—/1 = const.,

and since 13 p

P. — < I3

i.e. the perpendicular component of pressure behaves like that of a gas
with two degrees of freedom. At the same time p, p.

For dynamic problems one can again solve the Boltzmann equation
by a perturbation procedure, and for motion strictly perpendicular to the
field lines these adiabatic results apply. However, if strict symmetry
along field lines is not preserved the perturbed distribution function,
which can be expressed in terms of the perturbed fields and the unper-
turbed function, is expressed by an integral along field lines, and as might
be expected no true local hydrodynamics is obtained nothing localizes
flow along field lines.

(10.6)

B a.v
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Even the two-dimensional hydrodynamics so obtained is strictly
linearized, but some non-linear analogues are easily seen. Here, however,
a difficulty arises. It is known that in normal hydrodynamics the structure
of a shock wave can be obtained by using the dissipative terms in the
Navier—Stokes equation : that is by using the first order terms in an
expansion in the mean free time, or mean free path, and it might be
imagined that in a similar way a magnetohydrodynamic shock might be
obtained by expanding in powers of the Larmor radius. This is not the
case, because the adiabatic relation (10.7) has been shown to hold to all "
orders and the result B p is one of the shock conditions, thus p,
and only adiabatic flow normal to the field lines can be obtained.

Summarv—We  have seen that the most interesting magnetohydrodynamic
phenomena occur in plasmas and that, on the laboratory scale, the mean free path
is often long. However, we have shown how strictly two-dimensional linearized
magnetohydrodynamics can be obtained from the motion of non-colliding particles.
The derivation is not complete, since it is not capable of producing local hydro-
dynamic equations for non-symmetric flow, or even in the symmetric case for
non-adiabatic flow.
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